Teoria delle Stringhe Edward Witten racconta

Giordano Bruno
Giordano Bruno e la teoria extraterrestre
14/05/2016
Batterio alieno e arsenico
Batterio alieno sulla Terra la scoperta dalla Nasa
19/05/2016
Teoria delle Stringhe

Teoria delle Stringhe Edward Witten racconta
Edward Witten, matematico e fisico statunitense, vincitore della Medaglia Fields nel 1990, professore all’Institute for Advanced Study e fondatore della Teoria M., ripercorre gli step della fisica moderna da Einstein alla teoria delle stringhe.

Teoria delle Stringhe

Teoria delle Stringhe Edward Witten racconta – In fisica teorica, la teoria delle stringhe (letteralmente in inglese string significa “corda”) è una teoria, ancora in fase di sviluppo, che tenta di conciliare la meccanica quantistica con la relatività generale, e che si spera pertanto possa costituire una teoria del tutto. Si fonda sul principio secondo cui la materia, la radiazione e, sotto certe ipotesi, lo spazio e il tempo siano in realtà la manifestazione di entità fisiche fondamentali che, a seconda del numero di dimensioni in cui si sviluppano, vengono chiamate stringhe oppure p-brane.

La teoria delle stringhe è un modello fisico i cui costituenti fondamentali sono oggetti ad una dimensione (le stringhe), invece che di dimensione nulla (i punti) come nelle teorie precedenti. Per questa ragione è in grado di evitare i problemi connessi alla presenza di particelle puntiformi.
Uno studio più approfondito della teoria delle stringhe ha rivelato che descrive oggetti che possono avere dimensioni nulle (e quindi essere punti), una dimensione (stringhe), due dimensioni (membrane) o possedere un numero D di dimensioni maggiore di due (D-brane).

Il termine “teoria delle stringhe” si riferisce propriamente sia alla teoria bosonica a 26 dimensioni che alla teoria supersimmetrica a 10 dimensioni (teoria delle superstringhe). Tuttavia nell’uso comune fa riferimento alla variante supersimmetrica, mentre l’altra teoria prende il nome di teoria di stringa bosonica.

L’interesse verso la teoria risiede nel fatto che si spera possa essere una teoria del tutto, ossia che descriva tutte le forze fondamentali. Potrebbe cioè fornire un modello per la gravità quantistica, insieme alle altre interazioni fondamentali già contemplate dal Modello standard. Sebbene includa nella versione supersimmetrica anche i fermioni, i “mattoni” costituenti la materia, non è ancora chiaro se possa descrivere un universo con le caratteristiche di forze e materia come quello osservato.

A un livello più concreto la teoria delle stringhe ha originato progressi nella matematica dei nodi, negli spazi di Calabi-Yau e in molti altri campi. La teoria delle stringhe ha anche gettato maggior luce sulle teorie di gauge supersimmetriche, un argomento che include possibili estensioni del Modello standard.

Dimensioni Extra

Una caratteristica interessante della teoria delle stringhe è che essa predice il numero di dimensioni che l’Universo dovrebbe avere. Né la teoria dell’elettromagnetismo di Maxwell né la teoria della relatività di Einstein dicono nulla sull’argomento: entrambe le teorie richiedono che i fisici inseriscano “a mano” il numero delle dimensioni.

Invece, la teoria delle stringhe consente di calcolare il numero di dimensioni dello spazio-tempo dai suoi principi base. Tecnicamente, questo accade perché il principio di invarianza di Lorentz può essere soddisfatto solo in un certo numero di dimensioni. Più o meno questo equivale a dire che se misuriamo la distanza fra due punti e poi ruotiamo il nostro osservatore di un certo angolo e misuriamo di nuovo, la distanza osservata rimane la stessa solo se l’universo ha un ben preciso numero di dimensioni.

Il solo problema è che quando si esegue questo calcolo, il numero di dimensioni dell’universo non è quattro, come ci si potrebbe attendere (tre assi spaziali e uno temporale), bensì ventisei. Più precisamente, le teorie bosoniche implicano 26 dimensioni, mentre le superstringhe la M-teoria risulta richiedere 10 o 11 dimensioni. Nelle teorie di stringa bosonica, le 26 dimensioni risultano dall’equazione di Polyakov

Dimensioni Extra

Comunque, questi modelli sembrano in contraddizione con i fenomeni osservati. I fisici di solito risolvono questo problema in uno di due diversi modi. Il primo consiste nel compattare le dimensioni extra; cioè, si suppone che le 6 o 7 dimensioni extra producano effetti fisici su un raggio così piccolo da non poter essere rilevate nelle nostre osservazioni sperimentali. Senza aggiungere i flussi, riusciamo ad ottenere la risoluzione del modello a 6 dimensioni con gli spazi di Calabi-Yau. In 7 dimensioni, essi sono chiamati varietà G2 e in 8 varietà Spin. In sostanza, queste dimensioni extra vengono matematicamente compattate con successo facendole ripiegare su sé stesse.
Una analogia molto usata per questo è di considerare lo spazio multidimensionale come un tubo di gomma per il giardino. Se guardiamo il tubo da una certa distanza, esso sembra avere una sola dimensione, la sua lunghezza. Questo corrisponde alle quattro dimensioni macroscopiche cui siamo abituati normalmente. Se però ci avviciniamo al tubo, scopriamo che esso ha anche una seconda dimensione, la sua circonferenza. Questa dimensione extra è visibile solo se siamo vicini al tubo, proprio come le dimensioni extra degli spazi di Calabi-Yau sono visibili solo su lunghezze estremamente piccole, e quindi non sono facilmente osservabili.

(Ovviamente, un normale tubo per il giardino esiste nelle tre dimensioni spaziali, ma per consentire l’analogia si trascura il suo spessore e si considera solo il moto sulla superficie del tubo. Un punto sulla superficie del tubo può essere individuato con due numeri, la distanza da una delle estremità e una distanza sulla circonferenza, proprio come un punto sulla superficie terrestre può essere individuato univocamente dalla latitudine e dalla longitudine. In entrambi i casi, diciamo che l’oggetto ha due dimensioni spaziali. Come la Terra, i tubi da giardino hanno un interno, una regione che richiede una dimensione extra; però, a differenza della Terra, uno spazio di Calabi-Yau non ha un interno).

Un’altra possibilità è che noi siamo bloccati in un sottospazio a “3+1” dimensioni dell’intero universo, ove il 3+1 ci ricorda che il tempo è una dimensione di tipo diverso dallo spazio. Siccome questa idea implica oggetti matematici chiamati D-brane, essa è nota come mondo-brana.
In entrambi i casi la gravità, agendo nelle dimensioni nascoste, produce altre forze non gravitazionali, come l’elettromagnetismo. In linea di principio, quindi, è possibile dedurre la natura di queste dimensioni extra imponendo la congruenza con il modello standard, ma questa non è ancora una possibilità pratica.

Fonte: wikipedia.org